Math 254-1 Exam 1 Solutions

1. Carefully state the definition of "spanning". Give two examples for \mathbb{R}^{2}.

A set of vectors S is spanning if every vector in the vector space can be achieved through linear combinations of S. Equivalently, S is spanning if $\operatorname{span}(S)$ is the whole vector space. Many examples are possible. Any basis, such as $\{(1,0),(0,1)\}$, will work. But other examples are possible too, such as $\{(1,1),(1,2),(1,3)\}$.
2. Let $u=\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]$, and $v=\left[\begin{array}{lll}0 & 7 & 15\end{array}\right]$. For each of the following, determine what type they are (undefined, scalar, matrix/vector). If a matrix/vector, specify the dimensions. DO NOT CALCULATE ANY NUMBERS.
(a) $u v u$
(b) $u v^{T} u$
(c) $u^{T} v u^{T}$
(d) $(u \cdot v) \times u$
(e) $(u \times v) \cdot u$
u, v are $1 \times 3 ; u^{T}, v^{T}$ are 3×1. Hence $u v u$ has pattern $(1 \times 3)(1 \times 3)(1 \times 3)$; neither matrix multiplication is possible, hence (a) is undefined. $u v^{T} u$ has $(1 \times 3)(3 \times 1)(1 \times 3)$; both matrix multiplications are possible, and the result of (b) is a 1×3 matrix (or a row 3 -vector). $u^{T} v u^{T}$ has $(3 \times 1)(1 \times 3)(3 \times 1)$; both matrix multiplications are possible, and the result of (c) is a 3×1 matrix (or a column 3 -vector). $u \cdot v$ gives a scalar, hence (d) is undefined since cross product requires two vectors. (e) is a scalar, because $(u \times v)$ is a 3 -vector, hence its dot product with u can be calculated and is a scalar.
3. Let $u=(1,2,3)$, and $v=(15,-7,0)$. Are these vectors orthogonal?

Be sure to justify your answer.
We calculate $u \cdot v=1(15)+2(-7)+3(0)=1$. Since this is nonzero, these vectors are not orthogonal.
4. For $A=\left[\begin{array}{rrr}0 & 1 & -1 \\ -1 & 0 & 3\end{array}\right]$ and $B=\left[\begin{array}{cc}2 & 1 \\ 0 & -1 \\ 1 & 5\end{array}\right]$, calculate $A B$ and $B A$.

$$
A B=\left[\begin{array}{rr}
0+0-1 & 0-1-5 \\
-2+0+3 & -1+0+15
\end{array}\right]=\left[\begin{array}{rr}
-1 & -6 \\
1 & 14
\end{array}\right] . \quad B A=\left[\begin{array}{rrr}
0-1 & 2+0 & -2+3 \\
0+1 & 0+0 & 0-3 \\
0-5 & 1+0 & -1+15
\end{array}\right]=\left[\begin{array}{rrr}
-1 & 2 & 1 \\
-1 & 0 & -3 \\
-5 & 1 & 14
\end{array}\right] .
$$

5. For $u=(1,0,2)$ and $v=(0,-3,1)$, calculate $u \times v$ and $v \times u$.
Method 1, determinant formula: $u \times v=\left|\begin{array}{cc}0 & 2 \\ -3 & 1\end{array}\right| \mathbf{i}-\left|\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right| \mathbf{j}+\left|\begin{array}{cc}1 & 0 \\ 0 & -3\end{array}\right| \mathbf{k}=$
$=(0+6) \mathbf{i}-(1-0) \mathbf{j}+(-3+0) \mathbf{k}=6 \mathbf{i}-1 \mathbf{j}-3 \mathbf{k}=(6,-1,-3)$
$v \times u=\left|\begin{array}{rr}-3 & 1 \\ 0 & 2\end{array}\right| \mathbf{i}-\left|\begin{array}{c}0 \\ 1 \\ 1\end{array} \frac{1}{2}\right| \mathbf{j}+\left|\begin{array}{cc}0 & -3 \\ 1 & 0\end{array}\right| \mathbf{k}=(-6+0) \mathbf{i}-(0-1) \mathbf{j}+(0+3) \mathbf{k}=$
$=-6 \mathbf{i}+1 \mathbf{j}+3 \mathbf{k}=(-6,1,3)$
Method 2 , i, \mathbf{j}, \mathbf{k} technique: $u \times v=(\mathbf{i}+2 \mathbf{k}) \times(-3 \mathbf{j}+\mathbf{k})=-3(\mathbf{i} \times \mathbf{j})+(\mathbf{i} \times \mathbf{k})-$
$6(\mathbf{k} \times \mathbf{j})+2(\mathbf{k} \times \mathbf{k})=-3 \mathbf{k}+(-\mathbf{j})-6(-\mathbf{i})+2(0)=-3 \mathbf{k}-\mathbf{j}+6 \mathbf{i}=(6,-1,-3)$
$v \times u=(-3 \mathbf{j}+\mathbf{k}) \times(\mathbf{i}+2 \mathbf{k})=-3(\mathbf{j} \times \mathbf{i})-6(\mathbf{j} \times \mathbf{k})+(\mathbf{k} \times \mathbf{i})+2(\mathbf{k} \times \mathbf{k})=$
$-3(-\mathbf{k})-6(\mathbf{i})+(\mathbf{j})+2(0)=3 \mathbf{k}-6 \mathbf{i}+\mathbf{j}=(-6,1,3)$
